Lecture Notes for Abstract Algebra: Lecture 7

1 Cyclic groups

1.1 Cyclic groups, subgroups of a cyclic group and order of elements in a group

Definition 1. let $G=(G, *)$ be a group and $S \subset G$ a set. The subgroup generated by S, denoted $\langle S\rangle$, is the smallest subgroup of G containing S.

Example 2. Let G be a group and $x \in G$. Then, the subgroup $\langle x\rangle$ generated by x is the subgroup consisting of powers $\langle x\rangle=\left\{x^{n} \mid n \in \mathbb{Z}\right\}$.
Definition 3. $G=(G, *)$ be a group and $S \subset G$ a set. We say that G is generated by S when $\langle S\rangle=G$. A group G is cyclic if there exist an element $x \in G$ such that

$$
\langle x\rangle=G .
$$

The element x is called a generator of the group G.
Definition 4. The order of an element $x \in G$ is the order of the subgroup $\langle x\rangle$ generated by x. It may be finite or infinite.

Remark 5. The order of an element $x \in G$ is the smallest m such that $x^{m}=e$. If no such m exist, the order of x is infinite.

Example 6. In S_{3}, the subgroup generated by the permutation (12) is

$$
\langle(12)\rangle=\{1,(12)\} .
$$

On the other hand $\langle(123)\rangle=\{1,(123),(132)\}$. The order if (12) is two while the order of (123) is three.

Example 7. A cyclic group G of order n can be written as

$$
G=\left\{e, x, x^{2}, \ldots, x^{n-1}\right\} .
$$

where $x \in G$ is a generator of the group G.
Example 8. $\mathbb{Z}_{n}=(\mathbb{Z},+\bmod n)$ is generated by $1 \bmod n$ and is therefore cyclic of order n. The generator of a cyclic group is not unique, see for example how the same group \mathbb{Z}_{n} could be generated with any number a relatively prime to n.

Example 9. The group \mathbb{V}_{4} of order 4 is not cyclic. All elements, except the identity, have order 2:

$$
\mathbb{V}_{4}=\begin{array}{c|cccc}
& e & a & b & c \\
\hline e & e & a & b & c \\
a & a & e & c & b \\
b & b & c & e & a \\
c & c & b & a & e
\end{array}
$$

We can check $a+a=e, b+b=e$ and $c+c=e$. There is not element of order 4.

Remark 10. Every cyclic group must be abelian. The group \mathbb{V}_{4} is an example of an abelian group that is not cyclic.

Proposition 11. Every subgroup of a cyclic group is cyclic.
Proof. Let G be a cyclic group generated by x and suppose that H is a subgroup of G. If $H=\{e\}$, we finished. Suppose that H contains some other element g distinct from the identity. Then g can be written as x^{n} for some integer n. Since g is a subgroup, $g^{-1}=x^{-n}$ must also be in H. Since either n or $-n$ is positive, we can assume that H contains positive powers of x^{m} with $n>0$. Let m be the smallest natural number such that $x^{m} \in H$. Such an m exists by the Principle of Well-Ordering. We claim that $h=x^{m}$ is a generator for H. We must show that every $h^{\prime} \in H$ can be written as a power of h. Since $h^{\prime} \in H$ and H is a subgroup of $G, h^{\prime}=x^{k}$ for some integer k. Using the division algorithm, we can find numbers q and r such that $k=m q+r$ where $0 \leq r<m$; hence,

$$
x^{k}=x^{m q+r}=\left(x^{m}\right)^{q} x^{r}=h^{q} x^{r} .
$$

We have that $x^{r}=x^{k} h^{-q}$ is also in H. If $r \neq 0$, this will contradict the way we chose m. Hence $r=0$ and $k=m q \Rightarrow h^{\prime}=h^{q}$.

Remark 12. The dihedral group \mathbb{D}_{3} cannot be cyclic because is not even abelian! The reflections μ_{1}, μ_{2} and μ_{3} are elements of order 2 and the rotations ρ_{1} and ρ_{2} are elements of order 3. The composition of two reflections $\mu_{i} \circ \mu_{j}$ gives a rotation, which is an element of order 3. We can therefore check directly that no element has order 6.

Proposition 13. Let G be a cyclic group of order n and suppose that $a \in G$ is a generator of the group. If $b=a^{k}$, then the order of b is n / d, where $d=g c d(k, n)$.

Proof. We wish to find the smallest integer m such that $e=b^{m}=a^{m k}$. This is to find, the smallest integer m such that n divides $k m$ or, equivalently, n / d divides $m(k / d)$. Since d is the greatest common divisor of n and k, the numbers n / d and k / d are relatively prime and the number n / d must divide m. As a consequence $m \geq n / d$. On the other hand $b^{n / d}=a^{n(k / d)}=e^{k / d}=e$.

Corollary 14. A cyclic group G of order n has exactly one subgroup G_{d} of order d for each $d \mid n$. If a generates G, then $a^{n / d}$ generates G_{d}.

Proposition 15. An element x has the same order as and any of its conjugates $x_{y}=y x y^{-1}$.

Proof. We have the identity $\left(x_{y}\right)^{n}=y x y^{-1} y x y^{-1} \ldots y x y^{-1}=y x^{n} y^{-1}$. Hence

$$
x^{n}=e \Longleftrightarrow\left(x_{y}\right)^{n}=e
$$

Practice Questions:

1. Let G be a group and x an element of G. Show that the subset of integral powers $\langle x\rangle=\left\{x^{n} \mid n \in \mathbb{Z}\right\}$ is a subgroup of G.
2. Let G be a group. Show that the order of the element $x \in G$ is the smallest m such that $x^{m}=e$. Show that a power $x^{k}=e$ if and only if k is a multiple of m.
3. Show that any cyclic group is abelian. Find examples of finite abelian groups that are not cyclic.
4. Find the order of the elements in \mathbb{Z}_{6}. What elements generate the whole group?
